Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
JAMA Netw Open ; 5(10): e2238871, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2084948

ABSTRACT

Importance: Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. Objective: To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. Design, Setting, and Participants: This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. Exposures: COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). Main Outcomes and Measures: The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. Results: Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P < .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P < .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P < .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P < .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P < .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. Conclusions and Relevance: In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people.


Subject(s)
COVID-19 , Pneumonia , Humans , Male , Female , Middle Aged , Adult , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Critical Illness/therapy , COVID-19 Vaccines , Retrospective Studies , Cohort Studies , BNT162 Vaccine , Intensive Care Units , Pneumonia/epidemiology , Oxygen
2.
Int J Med Inform ; 164: 104807, 2022 08.
Article in English | MEDLINE | ID: covidwho-2076190

ABSTRACT

PURPOSE: COVID-19 disease frequently affects the lungs leading to bilateral viral pneumonia, progressing in some cases to severe respiratory failure requiring ICU admission and mechanical ventilation. Risk stratification at ICU admission is fundamental for resource allocation and decision making. We assessed performances of three machine learning approaches to predict mortality in COVID-19 patients admitted to ICU using early operative data from the Lombardy ICU Network. METHODS: This is a secondary analysis of prospectively collected data from Lombardy ICU network. A logistic regression, balanced logistic regression and random forest were built to predict survival on two datasets: dataset A included patient demographics, medications before admission and comorbidities, and dataset B included respiratory data the first day in ICU. RESULTS: Models were trained on 1484 patients on four outcomes (7/14/21/28 days) and reached the greatest predictive performance at 28 days (F1-score: 0.75 and AUC: 0.80). Age, number of comorbidities and male gender were strongly associated with mortality. On dataset B, mode of ventilatory assistance at ICU admission and fraction of inspired oxygen were associated with an increase in prediction performances. CONCLUSIONS: Machine learning techniques might be useful in emergency phases to reach good predictive performances maintaining interpretability to gain knowledge on complex situations and enhance patient management and resources.


Subject(s)
COVID-19 , COVID-19/epidemiology , Critical Illness/epidemiology , Disease Outbreaks , Humans , Intensive Care Units , Male , Retrospective Studies , SARS-CoV-2 , Supervised Machine Learning
3.
Curr Opin Crit Care ; 28(6): 652-659, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2063071

ABSTRACT

PURPOSE OF REVIEW: To describe different strategies adopted during coronavirus disease 2019 pandemic to cope with the shortage of mechanical ventilators. RECENT FINDINGS: Short-term interventions aimed to increase ventilator supply and decrease demand. They included: redistributing and centralizing patients, repurposing operating rooms into intensive care units (ICUs) and boosting ventilator production and using stocks and back-ups; support by the critical care outreach team to optimize treatment of patients in the ward and permit early discharge from the ICU, ethical allocation of mechanical ventilators to patients who could benefit more from intensive treatment and short term ICU trials for selected patients with uncertain prognosis, respectively. Long-term strategies included education and training of non-ICU physicians and nurses to the care of critically-ill patients and measures to decrease viral spread among the population and the progression from mild to severe disease. SUMMARY: The experience and evidence gained during the current pandemic is of paramount importance for physicians and law-makers to plan in advance an appropriate response to any future similar crisis. Intensive care unit, hospital, national and international policies can all be improved to build systems capable of treating an unexpectedly large number of patients, while keeping a high standard of safety.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , Ventilators, Mechanical , Pandemics , Intensive Care Units , Critical Care
5.
Intensive Crit Care Nurs ; 65: 103053, 2021 08.
Article in English | MEDLINE | ID: covidwho-2015365
6.
Intensive Care Med ; 48(11): 1614-1616, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1999918
7.
Am J Hematol ; 97(11): 1404-1412, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1976682

ABSTRACT

Coronavirus Disease (COVID-19) can be considered as a human pathological model of inflammation combined with hypoxia. In this setting, both erythropoiesis and iron metabolism appear to be profoundly affected by inflammatory and hypoxic stimuli, which act in the opposite direction on hepcidin regulation. The impact of low blood oxygen levels on erythropoiesis and iron metabolism in the context of human hypoxic disease (e.g., pneumonia) has not been fully elucidated. This multicentric observational study was aimed at investigating the prevalence of anemia, the alterations of iron homeostasis, and the relationship between inflammation, hypoxia, and erythropoietic parameters in a cohort of 481 COVID-19 patients admitted both to medical wards and intensive care units (ICU). Data were collected on admission and after 7 days of hospitalization. On admission, nearly half of the patients were anemic, displaying mild-to-moderate anemia. We found that hepcidin levels were increased during the whole period of observation. The patients with a higher burden of disease (i.e., those who needed intensive care treatment or had a more severe degree of hypoxia) showed lower hepcidin levels, despite having a more marked inflammatory pattern. Erythropoietin (EPO) levels were also lower in the ICU group on admission. After 7 days, EPO levels rose in the ICU group while they remained stable in the non-ICU group, reflecting that the initial hypoxic stimulus was stronger in the first group. These findings strengthen the hypothesis that, at least in the early phases, hypoxia-driven stimuli prevail over inflammation in the regulation of hepcidin and, finally, of erythropoiesis.


Subject(s)
Anemia , COVID-19 , Erythropoietin , Erythropoiesis/physiology , Hepcidins , Humans , Hypoxia , Inflammation , Iron
8.
Crit Care ; 26(1): 127, 2022 05 07.
Article in English | MEDLINE | ID: covidwho-1951296

ABSTRACT

BACKGROUND: Prone positioning improves survival in moderate-to-severe acute respiratory distress syndrome (ARDS) unrelated to the novel coronavirus disease (COVID-19). This benefit is probably mediated by a decrease in alveolar collapse and hyperinflation and a more homogeneous distribution of lung aeration, with fewer harms from mechanical ventilation. In this preliminary physiological study we aimed to verify whether prone positioning causes analogue changes in lung aeration in COVID-19. A positive result would support prone positioning even in this other population. METHODS: Fifteen mechanically-ventilated patients with COVID-19 underwent a lung computed tomography in the supine and prone position with a constant positive end-expiratory pressure (PEEP) within three days of endotracheal intubation. Using quantitative analysis, we measured the volume of the non-aerated, poorly-aerated, well-aerated, and over-aerated compartments and the gas-to-tissue ratio of the ten vertical levels of the lung. In addition, we expressed the heterogeneity of lung aeration with the standardized median absolute deviation of the ten vertical gas-to-tissue ratios, with lower values indicating less heterogeneity. RESULTS: By the time of the study, PEEP was 12 (10-14) cmH2O and the PaO2:FiO2 107 (84-173) mmHg in the supine position. With prone positioning, the volume of the non-aerated compartment decreased by 82 (26-147) ml, of the poorly-aerated compartment increased by 82 (53-174) ml, of the normally-aerated compartment did not significantly change, and of the over-aerated compartment decreased by 28 (11-186) ml. In eight (53%) patients, the volume of the over-aerated compartment decreased more than the volume of the non-aerated compartment. The gas-to-tissue ratio of the ten vertical levels of the lung decreased by 0.34 (0.25-0.49) ml/g per level in the supine position and by 0.03 (- 0.11 to 0.14) ml/g in the prone position (p < 0.001). The standardized median absolute deviation of the gas-to-tissue ratios of those ten levels decreased in all patients, from 0.55 (0.50-0.71) to 0.20 (0.14-0.27) (p < 0.001). CONCLUSIONS: In fifteen patients with COVID-19, prone positioning decreased alveolar collapse, hyperinflation, and homogenized lung aeration. A similar response has been observed in other ARDS, where prone positioning improves outcome. Therefore, our data provide a pathophysiological rationale to support prone positioning even in COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Lung/diagnostic imaging , Prone Position/physiology , Respiration, Artificial , Respiratory Distress Syndrome/therapy
9.
Hum Mol Genet ; 31(23): 3945-3966, 2022 11 28.
Article in English | MEDLINE | ID: covidwho-1948292

ABSTRACT

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Genome-Wide Association Study , Haplotypes , Polymorphism, Genetic
10.
EBioMedicine ; 77: 103925, 2022 03.
Article in English | MEDLINE | ID: covidwho-1936323

Subject(s)
COVID-19 , Nitric Oxide , Humans
12.
Crit Care Med ; 49(11): e1157-e1162, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1467424

ABSTRACT

OBJECTIVES: Joblessness is common in survivors from critical care. Our aim was to describe rates of return to work versus unemployment following coronavirus disease 2019 acute respiratory distress syndrome requiring intensive care admission. DESIGN: Single-center, prospective case series. SETTING: Critical Care Follow-Up Clinic, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy. PATIENTS: One hundred and one consecutive laboratory-confirmed coronavirus disease 2019 patients were discharged from our hospital following an ICU stay between March 1, 2020, and June 30, 2020. Twenty-five died in the ICU. Seventy-six were discharged alive from hospital. Two patients refused participation, while three were unreachable. The remaining 71 were alive at 6 months and interviewed. INTERVENTIONS: Baseline and outcome healthcare data were extracted from the electronic patient records. Employment data were collected using a previously published structured interview instrument that included current and previous employment status, hours worked per week, and timing of return to work. Health-related quality of life status was assessed using the Italian EQ-5D-5L questionnaire. MEASUREMENTS AND MAIN RESULTS: Of the 71 interviewed patients, 45 (63%) were employed prior to coronavirus disease 2019, of which 40 (89%) of them worked full-time. Thirty-three (73%) of the previously employed survivors had returned to work by 6 months, 10 (22%) were unemployed, and 2 (5%) were newly retired. Among those who returned to work, 20 (85%) of them reported reduced effectiveness at work. Those who did not return to work were either still on sick leave or lost their job as a consequence of coronavirus disease 2019. Reported quality of life of survivors not returning to work was worse than of those returning to work. CONCLUSIONS: The majority of coronavirus disease 2019 survivors following ICU in our cohort had returned to work by 6 months of follow-up. However, most of them reported reduced work effectiveness. Prolonged sick leave and unemployment were common findings in those not returning.


Subject(s)
COVID-19/epidemiology , Critical Care/statistics & numerical data , Respiratory Distress Syndrome/epidemiology , Return to Work/statistics & numerical data , Unemployment/statistics & numerical data , Age Factors , Aged , Comorbidity , Female , Frailty/epidemiology , Humans , Length of Stay , Male , Middle Aged , Patient Discharge/statistics & numerical data , Quality of Life , Retirement/statistics & numerical data , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Socioeconomic Factors
13.
Chest ; 161(4): 979-988, 2022 04.
Article in English | MEDLINE | ID: covidwho-1466219

ABSTRACT

BACKGROUND: International guidelines suggest using a higher (> 10 cm H2O) positive end-expiratory pressure (PEEP) in patients with moderate-to-severe ARDS due to COVID-19. However, even if oxygenation generally improves with a higher PEEP, compliance, and Paco2 frequently do not, as if recruitment was small. RESEARCH QUESTION: Is the potential for lung recruitment small in patients with early ARDS due to COVID-19? STUDY DESIGN AND METHODS: Forty patients with ARDS due to COVID-19 were studied in the supine position within 3 days of endotracheal intubation. They all underwent a PEEP trial, in which oxygenation, compliance, and Paco2 were measured with 5, 10, and 15 cm H2O of PEEP, and all other ventilatory settings unchanged. Twenty underwent a whole-lung static CT scan at 5 and 45 cm H2O, and the other 20 at 5 and 15 cm H2O of airway pressure. Recruitment and hyperinflation were defined as a decrease in the volume of the non-aerated (density above -100 HU) and an increase in the volume of the over-aerated (density below -900 HU) lung compartments, respectively. RESULTS: From 5 to 15 cm H2O, oxygenation improved in 36 (90%) patients but compliance only in 11 (28%) and Paco2 only in 14 (35%). From 5 to 45 cm H2O, recruitment was 351 (161-462) mL and hyperinflation 465 (220-681) mL. From 5 to 15 cm H2O, recruitment was 168 (110-202) mL and hyperinflation 121 (63-270) mL. Hyperinflation variably developed in all patients and exceeded recruitment in more than half of them. INTERPRETATION: Patients with early ARDS due to COVID-19, ventilated in the supine position, present with a large potential for lung recruitment. Even so, their compliance and Paco2 do not generally improve with a higher PEEP, possibly because of hyperinflation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , COVID-19/therapy , Humans , Lung/diagnostic imaging , Positive-Pressure Respiration , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
14.
Biomedicines ; 9(9)2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1408456

ABSTRACT

The synergic combination of D-dimer (as proxy of thrombotic/vascular injury) and static compliance (as proxy of parenchymal injury) in predicting mortality in COVID-19-ARDS has not been systematically evaluated. The objective is to determine whether the combination of elevated D-dimer and low static compliance can predict mortality in patients with COVID-19-ARDS. A "training sample" (March-June 2020) and a "testing sample" (September 2020-January 2021) of adult patients invasively ventilated for COVID-19-ARDS were collected in nine hospitals. D-dimer and compliance in the first 24 h were recorded. Study outcome was all-cause mortality at 28-days. Cut-offs for D-dimer and compliance were identified by receiver operating characteristic curve analysis. Mutually exclusive groups were selected using classification tree analysis with chi-square automatic interaction detection. Time to death in the resulting groups was estimated with Cox regression adjusted for SOFA, sex, age, PaO2/FiO2 ratio, and sample (training/testing). "Training" and "testing" samples amounted to 347 and 296 patients, respectively. Three groups were identified: D-dimer ≤ 1880 ng/mL (LD); D-dimer > 1880 ng/mL and compliance > 41 mL/cmH2O (LD-HC); D-dimer > 1880 ng/mL and compliance ≤ 41 mL/cmH2O (HD-LC). 28-days mortality progressively increased in the three groups (from 24% to 35% and 57% (training) and from 27% to 39% and 60% (testing), respectively; p < 0.01). Adjusted mortality was significantly higher in HD-LC group compared with LD (HR = 0.479, p < 0.001) and HD-HC (HR = 0.542, p < 0.01); no difference was found between LD and HD-HC. In conclusion, combination of high D-dimer and low static compliance identifies a clinical phenotype with high mortality in COVID-19-ARDS.

16.
Intensive Care Med ; 47(9): 995-1008, 2021 09.
Article in English | MEDLINE | ID: covidwho-1349283

ABSTRACT

PURPOSE: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). METHODS: In this retrospective-prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. RESULTS: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55-69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89-175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil-lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. CONCLUSION: Daily values or trends over time of parameters associated with acute organ dysfunction, acid-base derangement, coagulation impairment, or systemic inflammation were associated with patient survival.


Subject(s)
COVID-19 , Critical Illness , Aged , Humans , Intensive Care Units , Italy , Male , Middle Aged , Prospective Studies , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2
17.
Ann Intensive Care ; 11(1): 91, 2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-1255967

ABSTRACT

BACKGROUND: Survivors of severe COVID-19 are at risk of impaired health-related quality of life (HRQoL) and persistent physical and psychological disability after ICU and hospital discharge. The subsequent social burden is a major concern. We aimed to assess the short-term HRQoL, physical function and prevalence of post-traumatic stress symptoms of invasively mechanically ventilated COVID-19 patients treated in our ICU. METHODS: Prospective, observational cohort study in a follow-up clinic. Patients completed a 6-min walking test (6MWT) to assess their cardio-pulmonary function around 2 months (early follow-up) from hospital discharge, the EQ-5D-5L questionnaire for quality of life assessment around 2 months and at 6 months from hospital discharge and an anonymous web-based Impact of Event Scale-Revised (IES-R) questionnaire for Post-Traumatic Stress symptoms at 2 months. RESULTS: 47 patients attended our follow-up program, mean age 59 ± 10 years, median pre-morbid Clinical Frailty Scale (CFS) 2 [2-3]. The median distance walked in 6 min was 470 [406-516] m, 83 [67-99]% of the predicted value. Overall 1 out 3 patients and 4/18 (22%) among those with a good functional baseline prior to COVID-19 (CFS of 1 or 2) had lower (84%) than predicted 6MWT. EQ-5D-5L quality of life VAS was 80 [70-90] out of 100 at early follow-up with a slight improvement to 85 [77.5-90] at 6 months. Mobility, self-care and usual activities improved between the two timepoints, while pain/discomfort and depression/anxiety did not improve or got worse. The IES-R total score was greater than the threshold for concern of 1.6 in 27/41(66%) respondents. CONCLUSIONS: Patients recovering from severe COVID-19 requiring invasive mechanical ventilation surviving hospital discharge present with early mild to moderate functional impairment, mildly reduced quality of life from hospital discharge with an overall improvement of mobility, self-care and the ability of performing usual activities, while a worsening of pain and depression/anxiety symptoms at 6 months and a large proportion of symptoms of post-traumatic distress soon after hospital discharge.

18.
Respir Care ; 66(6): 928-935, 2021 06.
Article in English | MEDLINE | ID: covidwho-1183971

ABSTRACT

BACKGROUND: During the coronavirus disease 2019 (COVID-19) outbreak, a critical care outreach team was implemented in our hospital to guarantee multidisciplinary patient assessment at admission and prompt ICU support in medical wards. In this paper, we report the activity plan results and describe the baseline characteristics of the referred subjects. METHODS: We retrospectively evaluated data from 125 subjects referred to the critical care outreach team from March 22 to April 22, 2020. We considered subjects with a ceiling of care decision, with those deemed eligible assigned to level 3 care (ward subgroup), and those deemed ineligible admitted to the ICU (ICU subgroup). Quality indicators of the outreach team plan delivery included number of cardiac arrest calls, number of intubations in level 2 areas, and ineffective palliative support. RESULTS: We enrolled 125 consecutive adult subjects with a confirmed diagnosis of COVID-19. We did not report any emergency endotracheal intubations in the clinical ward. In the care ceiling subgroup, we had 2 (3.3%) emergency calls for cardiac arrest, whereas signs of ineffective palliative support were reported in 5 subjects (12.5%). Noninvasive forms of respiratory assistance were delivered to 40.0% of subjects in the ward subgroup (median 3 d [interquartile range (IQR) 2-5]), to 45.9% of subjects in the care ceiling subgroup (median 5 d [IQR 3-7]), and to 64.7% of subjects in the ICU subgroup (median 2.5 d [IQR 1-3]). Thirty of the 31 ward subjects (96.7%), 26 of the 34 ICU subjects, (76.4%), and 19 of the 61 ceiling of care subjects (31.1%) were discharged. CONCLUSIONS: In the context of a hospital and ICU surge, a multidisciplinary daily plan supported by a dedicated critical care outreach team was associated with a low rate of cardiac arrest calls, no emergency intubations in the ward, and appropriate palliative care support for subjects with a ceiling of care decision.


Subject(s)
COVID-19 , Adult , Critical Care , Hospitals , Humans , Intensive Care Units , Retrospective Studies , SARS-CoV-2
19.
Crit Care ; 25(1): 128, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1169981

ABSTRACT

BACKGROUND: Limited data are available on the use of prone position in intubated, invasively ventilated patients with Coronavirus disease-19 (COVID-19). Aim of this study is to investigate the use and effect of prone position in this population during the first 2020 pandemic wave. METHODS: Retrospective, multicentre, national cohort study conducted between February 24 and June 14, 2020, in 24 Italian Intensive Care Units (ICU) on adult patients needing invasive mechanical ventilation for respiratory failure caused by COVID-19. Clinical data were collected on the day of ICU admission. Information regarding the use of prone position was collected daily. Follow-up for patient outcomes was performed on July 15, 2020. The respiratory effects of the first prone position were studied in a subset of 78 patients. Patients were classified as Oxygen Responders if the PaO2/FiO2 ratio increased ≥ 20 mmHg during prone position and as Carbon Dioxide Responders if the ventilatory ratio was reduced during prone position. RESULTS: Of 1057 included patients, mild, moderate and severe ARDS was present in 15, 50 and 35% of patients, respectively, and had a resulting mortality of 25, 33 and 41%. Prone position was applied in 61% of the patients. Patients placed prone had a more severe disease and died significantly more (45% vs. 33%, p < 0.001). Overall, prone position induced a significant increase in PaO2/FiO2 ratio, while no change in respiratory system compliance or ventilatory ratio was observed. Seventy-eight % of the subset of 78 patients were Oxygen Responders. Non-Responders had a more severe respiratory failure and died more often in the ICU (65% vs. 38%, p = 0.047). Forty-seven % of patients were defined as Carbon Dioxide Responders. These patients were older and had more comorbidities; however, no difference in terms of ICU mortality was observed (51% vs. 37%, p = 0.189 for Carbon Dioxide Responders and Non-Responders, respectively). CONCLUSIONS: During the COVID-19 pandemic, prone position has been widely adopted to treat mechanically ventilated patients with respiratory failure. The majority of patients improved their oxygenation during prone position, most likely due to a better ventilation perfusion matching. TRIAL REGISTRATION: clinicaltrials.gov number: NCT04388670.


Subject(s)
COVID-19/therapy , Critical Care/standards , Intubation/standards , Patient Positioning/standards , Prone Position , Respiration, Artificial/standards , Supine Position , Aged , Cohort Studies , Female , Humans , Italy , Male , Middle Aged , Practice Guidelines as Topic , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL